Crazy Contraptions Enquire Now Rube Goldberg would love this! This school science visit is all about design thinking to apply energy changes, momentum, gravity and friction to time-based challenge. Students will learn teamwork, fine motor and planning skills whilst discovering applications of simple machines such as levers, pulleys, wheel and axles and more. Perfect for applying STEM concepts in a fun environment. The challenge provides an opportunity for fair testing ideas. It is all about applying your imagination to re-purpose objects to complete a task. Opens up discussions on potential vs. kinetic energy and the essential elements of engineering. In addition, time will be spent ensuring that students understand how contact and non-contact forces affect an object’s motion. Newton would be happy here with this STEM content! Trustpilot Quick Links Past projects Requirements Cost per Science Show Free Science Resources Back to Secondary Science Incursions 150 Free Experiments Fizzics in the Media Australian Curriculum Mapping for all science workshops & shows Australian National Curriculum Mapping for all our science incursions Australian ACARA Content Outcomes: Science F-10 Version 9.0 Year 7 investigate and represent balanced and unbalanced forces, including gravitational force, acting on objects, and relate changes in an object’s motion to its mass and the magnitude and direction of forces acting on it AC9S7U04 Year 7 & 8 develop investigable questions, reasoned predictions and hypotheses to explore scientific models, identify patterns and test relationships AC9S7I01 AC9S8I01 analyse data and information to describe patterns, trends and relationships and identify anomalies AC9S7I05 AC9S8I05 construct evidence-based arguments to support conclusions or evaluate claims and consider any ethical issues and cultural protocols associated with using or citing secondary data or information AC9S7I07 AC9S8I07 Year 9 & 10 develop investigable questions, reasoned predictions and hypotheses to test relationships and develop explanatory models AC9S9I01 AC9S10I01 analyse and connect a variety of data and information to identify and explain patterns, trends, relationships and anomalies AC9S9I05 AC9S10I05 construct arguments based on analysis of a variety of evidence to support conclusions or evaluate claims, and consider any ethical issues and cultural protocols associated with accessing, using or citing secondary data or information AC9S9I07 AC9S10I07 Australian National Curriculum Mapping for all our science workshops & shows NSW SCIENCE SYLLABUS CONTENT for all our incursions NSW Science 7–10 Syllabus (2023) Stage 4 A student: identifies questions and makes predictions to guide scientific investigations SC4-WS-02 – Identify questions and problems that can be investigated scientifically – Make predictions based on scientific knowledge and observations describes the effects of forces in everyday contexts SC4-FOR-01 – Explain forces as either direct (contact) or indirect (non-contact) – Conduct a practical investigation on the effects of a range of direct and indirect forces – Investigate examples of forces and magnetism in familiar contexts Stage 5 asks questions or makes predictions using observations SCLS-WS-02 – Ask questions about familiar objects and events based on observations – Make predictions based on observations evaluates current and alternative energy use based on ethical and sustainability considerations SC5-EGY-01 – Explain efficiency in relation to energy transfers – Explain how to improve energy efficiency in energy transfers and transformations NSW K – 10 Science Syllabus mapping for all our NSW incursions VIC Curriculum F–10 Version 2.0 For explanatory points & implementation advice for each dot point, please visit the VIC Curriculum F-10 site. Levels 7 and 8 balanced and unbalanced forces acting on objects, including gravitational force, may be investigated and represented using force diagrams; changes in an object’s motion can be related to its mass and the magnitude and direction of the forces acting on it. VC2S8U14 energy exists in different forms, including thermal, chemical, gravitational and elastic, and may be classified as kinetic or potential; energy transfers (conduction, convection and radiation) and transformations occur in simple systems and can be analysed in terms of energy efficiency. VC2S8U15 investigable questions, reasoned predictions and hypotheses can be developed in guiding investigations to identify patterns, test relationships and analyse and evaluate scientific models. VC2S8I01 scientific methods, conclusions and claims can be analysed to identify assumptions, possible sources of error, conflicting evidence and unanswered questions. VC2S8I06 evidence-based arguments can be constructed to support conclusions or evaluate claims, including consideration of ethical issues and protocols associated with using or citing secondary data or information. VC2S8I07 Levels 9 & 10 investigable questions, reasoned predictions and hypotheses can be used in guiding investigations to test and develop explanatory models and relationships. VC2S10I01 the validity and reproducibility of investigation methods and the validity of conclusions and claims can be evaluated, including by identifying assumptions, conflicting evidence, biases that may influence observations and conclusions, sources of error and areas of uncertainty. VC2S10I06 arguments based on a variety of evidence can be constructed to support conclusions or evaluate claims, including consideration of any ethical issues and cultural protocols associated with accessing, using or citing secondary data or information. VC2S10I07 Feedback on this workshop Finishing the final activity for Day 2 with “Crazy Contraptions with Fizzics Education” at @Macquarie_Uni Science Experience. @NISEP01 @JoanneJamie2 @MQSciEng pic.twitter.com/1MUooEmv2A — Macquarie University School of Natural Sciences (@mqnatsci) October 5, 2022 Trustpilot Requirements Appropriate for Years 7 to 10 with a maximum of 30 students per class 10 tables arranged around the room with access to clear wall space Chairs are not required Duration 60 or 90 minutes, set up time 30 minutes and pack up time 30 minutes For us to provide the best possible learning experience, the materials used during the presentation may be varied to suit the conditions and the audience. Please chat with our presenter if there is a particular focus that you’d like us to cover. During Social Distancing – Contact us and we’ll tailor a program to suit both your school and the State’s social distancing requirements. Further details here Did you know about our larger stage shows? Designed to engage groups of up to 240 students, pair this workshop with one of these school favourites! Big Science Big Fun tick tick BOOM! Destination Moon Cost $580 inc. GST for a 60-minute workshop or $660 inc. GST for a 90-minute workshop. In a regional area? Find out how we can attend your school as part of a country science tour! Trustpilot Find out more here Enquire Now Fizzics Education Awards Related Shows Light & Colour Years 7 to 10 Maximum 60 students Science Show (NSW & VIC only) 60 minutes Online Class Available Human Endeavor Physical Science Science Inquiry New South Wales Victoria Year 7 Year 8 Year 9 Year 10 Read More Enquire Now Science of Sound Years 7 to 10 Maximum 60 students Science Show (NSW & VIC) 60 minutes Online Class Available Physical Science Science Inquiry New South Wales Victoria Year 7 Year 8 Year 9 Year 10 Human Endeavor Read More Enquire Now Distance learning programs for schools Award-winning distance learning programs for schools using video conferencing across Australia & beyond since 2004. Virtual excursions students love! Queensland Year 10 Chemical Science Australian Capital Territory Teacher Professional Development Digital Technologies Kindergarten Earth and Space Year 1 Health and Physical Education Year 2 Human Endeavor Year 3 Mathematics Year 4 Physical Science Year 5 Science Inquiry Year 6 New South Wales Year 7 Victoria Year 8 Biological Science Read More Enquire Now
Australian National Curriculum Mapping for all our science incursions Australian ACARA Content Outcomes: Science F-10 Version 9.0 Year 7 investigate and represent balanced and unbalanced forces, including gravitational force, acting on objects, and relate changes in an object’s motion to its mass and the magnitude and direction of forces acting on it AC9S7U04 Year 7 & 8 develop investigable questions, reasoned predictions and hypotheses to explore scientific models, identify patterns and test relationships AC9S7I01 AC9S8I01 analyse data and information to describe patterns, trends and relationships and identify anomalies AC9S7I05 AC9S8I05 construct evidence-based arguments to support conclusions or evaluate claims and consider any ethical issues and cultural protocols associated with using or citing secondary data or information AC9S7I07 AC9S8I07 Year 9 & 10 develop investigable questions, reasoned predictions and hypotheses to test relationships and develop explanatory models AC9S9I01 AC9S10I01 analyse and connect a variety of data and information to identify and explain patterns, trends, relationships and anomalies AC9S9I05 AC9S10I05 construct arguments based on analysis of a variety of evidence to support conclusions or evaluate claims, and consider any ethical issues and cultural protocols associated with accessing, using or citing secondary data or information AC9S9I07 AC9S10I07 Australian National Curriculum Mapping for all our science workshops & shows
NSW Science 7–10 Syllabus (2023) Stage 4 A student: identifies questions and makes predictions to guide scientific investigations SC4-WS-02 – Identify questions and problems that can be investigated scientifically – Make predictions based on scientific knowledge and observations describes the effects of forces in everyday contexts SC4-FOR-01 – Explain forces as either direct (contact) or indirect (non-contact) – Conduct a practical investigation on the effects of a range of direct and indirect forces – Investigate examples of forces and magnetism in familiar contexts Stage 5 asks questions or makes predictions using observations SCLS-WS-02 – Ask questions about familiar objects and events based on observations – Make predictions based on observations evaluates current and alternative energy use based on ethical and sustainability considerations SC5-EGY-01 – Explain efficiency in relation to energy transfers – Explain how to improve energy efficiency in energy transfers and transformations NSW K – 10 Science Syllabus mapping for all our NSW incursions VIC Curriculum F–10 Version 2.0 For explanatory points & implementation advice for each dot point, please visit the VIC Curriculum F-10 site. Levels 7 and 8 balanced and unbalanced forces acting on objects, including gravitational force, may be investigated and represented using force diagrams; changes in an object’s motion can be related to its mass and the magnitude and direction of the forces acting on it. VC2S8U14 energy exists in different forms, including thermal, chemical, gravitational and elastic, and may be classified as kinetic or potential; energy transfers (conduction, convection and radiation) and transformations occur in simple systems and can be analysed in terms of energy efficiency. VC2S8U15 investigable questions, reasoned predictions and hypotheses can be developed in guiding investigations to identify patterns, test relationships and analyse and evaluate scientific models. VC2S8I01 scientific methods, conclusions and claims can be analysed to identify assumptions, possible sources of error, conflicting evidence and unanswered questions. VC2S8I06 evidence-based arguments can be constructed to support conclusions or evaluate claims, including consideration of ethical issues and protocols associated with using or citing secondary data or information. VC2S8I07 Levels 9 & 10 investigable questions, reasoned predictions and hypotheses can be used in guiding investigations to test and develop explanatory models and relationships. VC2S10I01 the validity and reproducibility of investigation methods and the validity of conclusions and claims can be evaluated, including by identifying assumptions, conflicting evidence, biases that may influence observations and conclusions, sources of error and areas of uncertainty. VC2S10I06 arguments based on a variety of evidence can be constructed to support conclusions or evaluate claims, including consideration of any ethical issues and cultural protocols associated with accessing, using or citing secondary data or information. VC2S10I07
Finishing the final activity for Day 2 with “Crazy Contraptions with Fizzics Education” at @Macquarie_Uni Science Experience. @NISEP01 @JoanneJamie2 @MQSciEng pic.twitter.com/1MUooEmv2A — Macquarie University School of Natural Sciences (@mqnatsci) October 5, 2022 Trustpilot
This website uses cookies to improve user experience. By using our website you consent to all cookies in accordance with our Cookie Policy.
Thank you for looking to subscribing to our newsletter 🙂 Through this service you’ll be first to know about the newest free experiments, science news and special offers. PLUS: Get a free Kitchen Chemistry Booklet with >20 experiments, how to use variables plus a handy template!
Please fill out the details below and an email will be sent to you. Once you get that just click on the link to confirm your subscription and you're all done!